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We present data for the time dependence of wooden spheres penetrating into a loose noncohesive packing of
glass beads. The stopping time is a factor of 3 longer than the time d /v0 needed to travel the total penetration
distance d at the impact speed v0. The acceleration decreases monotonically throughout the impact. These
kinematics are modeled by a position- and velocity-dependent stopping force that is constrained to reproduce
prior observations for the scaling of the penetration depth with the total drop distance.
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Granular impact is a phenomenon of natural interest. One
focus of recent work is the size and morphology of the crater,
and the analogy with planetary cratering �1–3�. Another is
the dramatic splash produced by the collapsing void �4,5�.
Still another is the final depth of penetration d, because it
probes granular mechanics via the depth-averaged stopping
force �Fs�=mgH /d, where m is the projectile mass, g
=980 cm/s2, h is the free-fall distance, and H=h+d is the
total drop distance �6–10�. For shallow impact by spheres
�6,10�, and for deeper impacts by cylinders with various tip
shapes �7�, the penetration depth scales as

d/d0 = �H/d0�1/3, �1�

where d0 is the minimum penetration for h=0. The inset of
Fig. 1 shows Eq. �1� agreeing with data over nearly three
decades in H. While this constrains the stopping force, it
does not reveal a unique form. For example, Eq. �1� is
equally consistent with Fs�z2 and Fs�v4/3, where z and v,
respectively, are the instantaneous depth and speed of the
projectile �6�. Which, if either, of these possible stopping
forces is correct? How does the nature of the stopping force,
and the resulting transfer of energy from the projectile to the
medium, conspire to produce the subsequent granular splash
and the final crater morphology? The unintuitive response of
granular media to external forcing is a topic of widespread
interest beyond the specific example of impact �11–13�.

Recently impact dynamics have been measured by high-
speed video �14–16� and by an embedded accelerometer
�17�. In Ref. �14� the total upward force is found to be �F
=−mg+ �mg+kd�. The stopping force, in parentheses, is in-
dependent of time but has a value that depends on the impact
speed v0. Solution of �F=ma gives a penetration depth of
d=�mv0

2 / �2k�. In Ref. �15�, the total force is found to be
�F=−mg+k	z	. The stopping force is Coulomb friction and
increases with time. Solution of �F=ma gives a penetration
depth of similar form to Eq. �1�: d /d0= �H /d0�1/2 with d0

=2mg /k. In Refs. �16,17�, the acceleration decreases with
time. The various reported force laws thus appear contradic-
tory, both in terms of their time dependencies and in terms of
their predicted penetration depths. Furthermore, none of the
reported force laws is consistent with the d
H1/3 observa-
tion of Eq. �1�.

In this paper we measure cratering dynamics in the unex-
plored regime of shallow impact, where the projectile never
submerges. Our approach is to measure position vs time with
an optical method, both faster and more precise than imag-
ing. As in Refs. �16,17�, we find that the acceleration de-
creases throughout impact. Our theoretical approach is to
consider possible instantaneous force laws whose depth av-
erages reproduce the observed scaling of Eq. �1�. The best
candidate depends on both position and speed, and suggests
that the seemingly disparate results of Refs. �6,14–17� may
not be contradictory but instead may represent limiting cases
of a common force law that holds for both shallow and deep
impacts.

Our materials and penetration depth measurements are
identical to those of Ref. �10�. The medium consists of glass
beads, diameter Dg=0.30±0.05 mm, prepared at 59% pack-
ing fraction by slowly turning off a fluidizing upflow of air.
The projectiles are wooden spheres of diameter Db=1.49 or

FIG. 1. �Color online� The vertical position z of the bottom of a
sphere vs time t, for typical conditions as labeled. The impact be-
gins at �z=0, t=0�, and gravity points in the −z direction. Only
every 1/100 datum is shown. The inset shows the final penetration
depth vs total drop distance, both scaled by the minimum penetra-
tion depth d0. The small symbols represent data for four wooden
spheres from Ref. �10�. The large symbols represent additional runs,
for which in this paper we report on impact dynamics �� is for the
example in the main plot�. The values of d0 are 0.63 and 0.44 cm
for the 1.99 and 1.49 in. diameter spheres, respectively.
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=1.99 in., and of density �b=0.7 g/mm3. These are held and
dropped from rest via a suction mechanism. The drop dis-
tance and final penetration depth are measured with a tele-
scope mounted to a height gauge. Data for the wooden
spheres of Ref. �10�, and for the dynamics runs reported
here, are shown in the inset of Fig. 1 to obey Eq. �1�.

The time-dependent vertical position of the projectile is
measured optically. A laser ��=532 nm� is placed about 1.5
m from the sample, along with a cylindrical lens that fans the
beam into a thin sheet. An aperture is used to select the
central portion of the beam, where the intensity is nearly
constant, and to set its size to be slightly greater than Db. On
the other side of the projectile, we align a second aperture
equal to Db. Behind this we place a large planoconvex lens to
focus the light onto a photodiode. As such, the collected light
intensity varies nearly linearly with projectile position. In
each run the photocurrent starts at a maximum, decreases as
the projectile freely falls onto the beam, goes to zero when
the beam is fully blocked, and then increases as the projectile
falls further and light passes over its top; impact occurs dur-
ing this last phase. To calibrate we hold the ball in several
known positions, with light passing above and below, and we
fit to the particular cubic polynomial expected for an aligned
Gaussian beam.

Typical depth vs time data are displayed in Fig. 1. The
impact occurs at t=0, and the projectile comes to rest in
about 0.03 s. The solid curve through the t�0 free-fall data
is not a fit, but rather −v0t−gt2 /2 with v0=�2gh. We digi-
tized the photocurrent using a 12-bit analog-to-digital con-
verter operating at 105 points per second. Finer digitization
and faster capture could be achieved at marginally greater
expense. The fidelity with which impact dynamics can be
captured by our method exceeds high-speed video. Notwith-
standing, there exist certain limitations. One is that for large
enough drop heights the grains splash into the laser beam. A
lesser limitation is that the minimum drop height was such
that none of the beam was blocked by the projectile prior to
its release. Overall we achieved over a factor of two varia-
tion in total drop distance for each sphere. To differentiate
position vs time data, we fitted to a cubic polynomial with
Gaussian weighting that nearly vanishes at the edges. For
fitting windows that are too small, the velocity and accelera-
tion results are noisy; for fitting windows that are not too
large, the depth-averaged acceleration equals gh /d as re-
quired by energy conservation. This check gives confidence
in both our data and our differentiation procedures.

Data for position-velocity-acceleration vs time, for both
spheres and all drop heights, are displayed in Fig. 2. All
lengths are scaled by the final penetration depth d, and all
times are scaled by the time d /v0 required to move a distance
d at the impact speed v0. To within measurement error, the
data all collapse according to this scaling. By construction,
the scaled position data must decay from 0 to −1 with an
initial slope of −1; the scaled velocity data must decay from
−1 to 0; and the depth average of the scaled acceleration
must equal 1 /2. We find that the spheres all come to rest at
about 3v0t /d, roughly three times longer than if they moved
the same distance at constant speed. Since v0
h1/2 and d

H1/3 have similar scaling, the impact duration is nearly
constant as in Refs. �14,17�. We also find that the accelera-

tion decreases with time, in accord with Refs. �16,17� but in
contrast to Refs. �14,15�. Note that the scaled value of gravi-
tational acceleration is −gd /v0

2=−d / �2h�; this ranges from
−0.05 to −0.10 for our runs �shaded gray region in Fig. 2,
bottom panel� and is generally small compared to the projec-
tile acceleration.

Our impact dynamics data can now be compared with
expectations for various candidate force laws. For example
the simple ad hoc form �F=−mg+k	z	�	v	� best agrees with
Eq. �1� if the exponents are related by �= �4−2�� /3. The
agreement becomes exact for �F=−mg+k	z	2. Predictions
for this special case ��=2,�=0�, and also for ��=0,�

FIG. 2. �Color online� Vertical components of position, velocity,
and acceleration vs time, for all runs; red �orange� dots are for Db

=1.99 in. �1.49 in.�. To within measurement errors, the data col-
lapse when lengths are scaled by d and times are scaled by d /v0,
where d is the final penetration depth and v0 is the impact speed. By
construction, the scaled position data all decay from 0 to −1 with an
initial slope of −1 �gray lines�. Note that the acceleration is not
constant �gray dashed line ad /v0

2=1/2�, but rather decreases with
time. The data rule out the power-law forces consistent with Eq. �1�,
but are consistent with a modified Poncelet model.
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=4/3�, are displayed with the scaled data in Fig. 2. Evi-
dently, the decay of z�t� is too fast for the former and too
slow for the latter. The actual behavior lies between these
extremes. A marginally acceptable fit, also shown, is attained
for ��=1/2 ,�=1�.

Better fits can be achieved if the stopping force equals a
constant plus a term that grows with speed. If the drag is
viscous, then the force law is given by the Bingham model,
�F=−mg+ �F0+b	v	�. If the drag is inertial, then the force
law is given by the Poncelet model, �F=−mg+ �F0+cv2�.
The Bingham model has recently been advocated for granu-
lar impact �8�, while the Poncelet model has long been used
for ballistics applications �18�. For both, position vs speed
can be found by writing a=v dv /dz, separating variables,
and integrating. All our dynamics data are shown again in
phase space plots of scaled velocity and acceleration vs
depth, as well as acceleration vs speed, in Fig. 3. The best
one-parameter fits to these models give �F0−mg� / �bv0�
=0.065 and �F0−mg� / �cv0

2�=0.20, respectively; �2 is
smaller for the Poncelet model by a factor of 2. These fits
�not shown� are both acceptable, but not quite as nice as the
one displayed. Still, neither model predicts the observed pen-
etration depth scaling of Eq. �1�. The Bingham model gives
d= �mv0 /b��1−� ln�1+1/��� where �= �F0−mg� / �bv0�, and
the Poncelet model gives d= �m / �2c��ln�1+1/�� where �
= �F0−mg� / �cv0

2�. Furthermore, the predicted initial accel-
erations, and the final penetration depths, are unphysical in
the limit v0→0.

We now modify the Poncelet model along the lines sug-
gested by Tsimring and Volfson �19�. Since the constant term
represents friction, it should depend on depth according to
hydrostatic pressure �15,20� and the geometry of the granular
medium near the projectile: �F=−mg+ �F�z�+cv2�. For any
F�z� this can be recast as an ordinary differential equation for
kinetic energy vs position and solved by use of an integrating
factor, exp�−2cz /m�. To exactly recover the observed pen-
etration depth scaling, Eq. �1�, and hence be consistent with
the observed depth-averaged stopping force, we find that the
friction term must be F�z� /mg= �3�z /d0�2−1�exp�−2	z	 /d1�
+1 where d1=m /c. This vanishes for shallow penetration
and approaches a constant for deep penetration, consistent
with the special limits advocated in Ref. �19�. Altogether the
projectile acceleration in our model is

a/g = �3�z/d0�2 − 1�exp�− 2	z	/d1� + v2/�gd1� . �2�

For high speeds and deep impacts the velocity term domi-
nates. For shallow impacts, the leading behavior is a /g
−1+2	z	 /d1+ �3/d0

2−2/d1
2�z2+v2 / �gd1�. For zero impact

speed, the initial acceleration is −g, as expected.
To compare our force model with data, it is convenient to

work in phase space since velocity vs depth can be computed
directly as

� v
v0
�2

= �1 −
	z/d	3 − 	z/d	�d0/d�2

1 − �d0/d�2 �e−2	z	/d1. �3�

For v0=0, the relation is v2=2gd0�	z /d0	− 	z /d0	3�
�exp�−2	z	 /d1�. Since the predicted dynamics depend on the
value of d /d0, the apparent collapse of data in Fig. 2 would
then represent clustering about an average to within measure-
ment error. Setting d /d0=2.77, the average value for all our
runs, the best one-parameter fit to Eq. �3� is for d /d1=1.2.
This gives an excellent description of the data, as shown by
the solid purple curves in Figs. 2 and 3.

As the ball comes to rest, in all acceptable fits, the time
becomes about 3d /v0 and the upward acceleration becomes
�1–2�g. After stopping the acceleration abruptly vanishes, as
seen directly in measurement by accelerometer �17�. The dis-
continuity is more apparent here in plots of acceleration vs
position or speed �Fig. 3� than in plots of acceleration vs
time �Fig. 2�.

In conclusion, we have measured the dynamics of impact
to further constrain the form of the force law responsible for
prior observations of final penetration depth vs total drop
distance, d
H1/3 �6,7,10�. For two sphere sizes, and a factor
of 2 in drop distance, the position vs time data appear to
collapse when scaled by impact speed and final depth. Sev-
eral possible force laws can now be ruled out altogether. Two
velocity-dependent force laws are consistent with dynamics
but not with penetration depth data. The best candidate is a
modification of the Poncelet model along the lines suggested
in Ref. �19�. It features inertial drag plus a particular depth-
dependent friction term designed to exactly recover the pen-
etration depth scaling of Eq. �1�. The predicted kinematics
Eqs. �2� and �3� agree very well with our present data. The
model has two important length scales, the minimum pen-
etration depth d0 and an inertial drag length d1. The former is

FIG. 3. �Color online� Velocity and acceleration vs position, and
acceleration vs velocity �inset�, for all runs, scaled as in Fig. 2; red
�orange� dots are for Db=1.99 in. �1.49 in.�. Excellent fits to the
modified Poncelet model are shown as solid purple curves. The
various dashed curves represent the same power-law forces as in
Fig. 2.
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given by d0= �0.14/	�3/2��b /�g�3/4Db where 	 is the tangent
of the repose angle, �g is the grain density, �b is the ball
density, and Db is the ball diameter �10�. For the system
examined here, d1 is about twice as large as d0 but we do not
yet know the dependence of d1 on system properties. This
could be deduced, and the model could be further tested, by
measurement of impact dynamics over a broad range of con-
ditions. At one extreme, the “dry quick sand” examined in

Ref. �15� for v0=0 is reproduced very well by our model
with d1=3d0 �21�.
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